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I Introduction

Backciround

In practice, the number of boundary value problems that can be

solved analytically is quite limited. Consequently, numerical techni-

ques are used to approximate the partial differential equations associ-

ated with the boundary value problems. These nunrical techniques

often lead to large sets of simultaneous equations. These ec _1'.ins

are usually sparse (they contain few non-zero elements in thc oeffi-

cient matrix).

Iterative techniques are often used to solve large sets of simul-

taneous equations. These techniques have two major advantages over

methods that solve the simultaneous equations directly. First, itera-

Live methods avoid calculations with the many zero elements in the

coefficient matrix while direct methods perform calculations on every

element of the coefficient matrix. Secondly, iterative methods are not

as susceptible to the accumulation of round-off error.

An important difficulty with the iterative techniques is

determining when a sufficient number of iterations has been corpleted

to ensure an accurate solution. This thesis addresses the problem of

when to stop iterating.

1ny boundary value problems can be expressed as variational

integrals to be minimized. Accordingly, one possible test for conver-

gence oi the numerical solution to the boundary value problem is

whether it minimizes the associated variational integral.

--..#
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Problem

The prinary purpose of this thesis is to determine the usefulness

of the variational integral as a test for termtinating the iterative

process.

The secondary purpose is to determine the usefulness of the

variational integral as a neans of determining %-ich numerical miethod

gives a more accurate solution.

Tbis thesis is limited to the study of stationary (time-inde-

pendent) heat equations in one and two spacial din-es ions. The numeri-

cal approximations to the boundary value problems consist of the

tinite-difference and finite-elennt techniaues. The iterative scheme

used is the Gauss-Seidel method (mitehod of successive displacements).

Approach and Presentation

* Section Ii introduces the theory necessary to understand the

variational integral, the finite-difference n'othod, and the finite-

elerptnt method. The Gauss-Seidel iterative technique is discussed.

The concept of norms is introduced and is applied in exan'r-imcg stopping

criteria.

Section III introduces the three stationary heat equations con-

sidered in this thesis. The variational integral formlations of the

prblenis are given and the numerical approximation techniques are

applied.

% Section IV presents the results of the study. First, errors

caused by approximating the variational integral are examined. Next,

the utility of the variational integral as a stopping criterion is

2



discussed. Finally, the usefulness of the variational integral as a

means of determining which numerical method gives a more accurate

solution is analyzed.

Section V drawrs conclusions and gives recamendations for future

studies.

.'.

-I.'
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V

Variationa 1 limtgra.

M.any problems in the physical sciences can be solved in two ways.

First, they can be written as differential equations subject to given

boundary conditions. Secondly, they can be written as variational

integrals to be extremized (maximized or m~inimized). The two formunla-

tions are equivalent because the function that will extremize the

variational integral will also satisfy the differential equation. This

equivalence ia demonstrated by the fact that the variational integral

is extremized only when an equation, called the Dler-lagrange

*, equation, is satisfied. This Euler-Lagrange equation is precisely the4 " same as the differential equation formulation of the problem

(Ref 8:67). In general, only elliptic differential equations can be

written in variational form (Refs 8:117; 5:164) but same exceptions

have been found (Ref 7:252-256).

In variational calculus, one looks for the function t(x,y) with

*' continuous second partial derivatives, that extremizes I (t) on region R

of the x-y plane:

1(M f!RF(x,y,t,t x t )dxdy (2.1)

where

t = t(x,y) (2.2)

,t (X Y)

ty= f Ix,y) (2.3)

t = t t(x, y) (2.4)
y Cy

A' 4



-'T find t (x,y), examine the set of functions

t(x,y) = t(x,y) + En (x,y) (2.5)

where £ takes on some value close to zero and Th(x,y) is an arbitrary

function with continuous second partial derivatives. At this point, an

inportant assumption is made. It is assumed that t is given on the

boundary as a constant or as a function of x and y. As a consequence,

t is rot subject to variation on the boundary and i(x,y) nust equal

zero on the boundary.

Substituting Eq (2.5) into Eq (2.1) gives

J(s:) - I(t+En) = ffRF(X,y,t+Cr,tx+sn ,t +cn )dxdy (2.6)
R X xy y

A necessary condition for I to nave an extremLun at t t is that

J(s) must have an extreum at E = 0. So

(E) IE= = 0 (2.7)

Differentiating Eq (2.6) with respect to c gives

~~3 ;;.ts(C) = R a " + Dx + @, DE d--%y (2.8)

or

= 1 = ss + rJ + r, -- W d (2.9)

By the chain rule (Ref 1:92)

at / F)=;F + a (2.10)
axw;x t:3xa



| ..

Il

, Vtherefore

DF a, 3F r) a13'(.11

k =a 7- rvW T- (2.11

and

_ 3_ (r4 )- n -) (2.12)

Substituting Eqs (2.11) and (2.12) into Eq (2.9) gives

[ 3F D 3 ~3 F
(C t - F - F dxd

+ a DF ) ,_Fd3 (2.13)

By applying Green's Theoren (Ref 1:197), the second integral in Eq

(12.13) can be transformed into a line integral

[F _L a xdF
ffjm ai ax Ah ay at yJ

@I( - t dxF (2.14)

But since n (x,y) = l e boundary, C

aJ(C) =ffn1i--- I-(-- idxy (2.15)

60*



Recall that

- (a ) 0 (2.7)

3Crh E0=O

if I is to have an extre mz at t = t. Therefore

[F_ a ( Wa F aF xdy 0 (2.16)

Since n is an arbitrary function of x and y then

aF a /3F = /3F (2.17)

Eq (2.17) is the Euler-Lagrange equation and it nust be satisfied for t

to extremize I(t). In the derivation that lead to Eq (2.17), it was

assumed that the function, t, was specified on the boundaries (Dirich-

let boundary conditions). Other boundary conditions could produce a

change in the integral that is to be extremized. A method of determining

the variational integral for other boundary conditions is given in

Mlikhlin (Ref 12:116-121). For all the problems considered in this

thesis, the Eler-Lagrange equation given as Eq (2.17) will give us a

function, F that extremizes I(t) as given in Eq (2.1).

Finite-Elemient 1-kathod

The finite eleuent method involves extremizing the variational

formulation of the problem. The solution region is divided into

interconnected subdmaiuns - the finite elenents. The elements in

one-dimensional problems are line segments. The Irost versatile ele-

ments in higher dimaisions are triangles for two-dimensional problems

4nd tetrahedrons for three-dimensional problem (&ef 8:86). Next,

iterpolation functions are chosen to represent the tenperatures

7
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over each element. These interpolation iunctions are often poly-

nanials. Suppose the function being integrated under the variational

-, integral contains derivatives up to the (r+l)th order. Then, the

v$.i interpolation tunctions must have rth order continuous derivatives at

the element interfaces and (r+l)th order continuous derivatives within

each element (Ref 8:124). When these criteria are met, the variational

integral for the entire solution region can be written as the sum of

the variational integrals of each element (Ref 8:78).

An interpolation function for the teeratures on an element is

written in terms of the nodal values associated with that element. The

variational integral is evaluated over the element and the integral is

differentiated with respect to the nodes and set equal to zero in order

to extremize the variational integral on that element. The equations

for each element are assembled to give the equations governing the

temperature over the entire region. in this mamer, a set of equations

is created which can be solved simultaneously to find the temperatures

at the element nodes. This set of sinmul=aneous equations can be

written in matrix form

At = b (2.18)

whkere

A = a coefficient matrix

t = vector of unknown nodal temperatures

b = vector of knwn constants
A

Rather than go into the details of the process here, an eample is

given in Appendix A.

8
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Finite-Difference Method

A differential equation can be converted into finite-difference

torm by approixmating the derivatives in the equation by dffferences.

The elementary definition of a derivative is (Ref 3:54)

dt lim t(x + x) - t(x) (219)
dx -xO Ax

The derivative is approximated by a divided difference

dt z t(x + Ax) - t(x) (2.20)
Ux Ax

In ne-dimensional problems, the solution region is broken into

line segments and a nodal point and its neighboring nodal points are

used to approximte the derivative at that nodal point. In this

manner, a linear difference equation is created for each nodal point.

The equations for the individual nodal points can be assembled to give

a set of algebraic equations to be solved simultaneously. Linear

combinations of Taylor series expansions give several difference

*, formulas with their associated truncation error (Ref 3:55-59):

First forward difference

4 .i6[=dt t(x + h) - t(x) + O(h) (2.21)

First central difference

dt t(x + h) - t(x - h) + o(h 2  (2.22)

S(.22h

j .1A9
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. First backward difference

dt t(x) - t(x - h) + 0(h) (2.23)

Second forward difference

d2t - t(x + 2h) - 2t(x + h) + t(x) + O(h) (2.24)

dx2  
h2

Second central difference

d 2.t - t(x + h) -2t(x) + t(x -h) + 0(h 2 ) (2.25)

dx2  h2

Second backward difference

A -t(x) - 2t(x - h) + t(x - 2h) + 0h (2.26)

dx2  h2

* where h is the distance between nodal points. Truncation error is a

result of ignoring higher order terms in the Taylor series. The

finite-difference method is also subject to scmthing called round-off

error. Round-off error is the result of the tact that a corputer can

store a limited number of significant figures. The total error due to

both trmcation and round-off error will be referred to as the discreti-

*zation error. It is the difference between the analytical solution and

the finite-difference solution at a particular nodal point.

For two-dimensional problems, a rectangular mesh is imposed over

the solution region in order to find approximate temperatures at the

nodal point of the mesh.

10
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Figure 2. 1. Mesh for a Rectangular Region

Solution of Simultaneous Equations

Both the finite-elenent and finite-difference methods lead to a

set of simultaneous liner algebraic equations. There are two methods

of solving for the unknowns in these equations -- direct methods and

indirect methods. Direct methods lead to an exact answer, excluding

round-off error, after a finite number of arithmetic operations.

Direct methods tend to be time consuming since each element in the

coefficient matrix must be operated upon. In general, N3 operations

are required where N is the number of equations (Refs 3:111; 5:209).

Sae examples of exact methods are Gaussian Elimination and the lhcamis

method (Ref 3:9-12; 44-48).

Indirect iterative methods require an infinite number of opera-

tions to solve the equations exactly, but an adequate solution can

11



usually be achieved in a finite number of steps. These methods usually

require less than N3 operations, especially if there are many zeros in

the coefficient matrix as is the case in the finite-elenent and finite-

difference equations. Furthermore, cunulative round-off error does not

grow as in the direct methods (Ret 3:111).

The matrix equation

At = b (2.18)

can be re-written

t = Gt + c (2.27)

An iterative solution can be written in the form

4. (n+l) = Gt(n ) + c (2.28)

where

t(n ) = nth iterated vector

G = iteration matrix

c = known constant vector

The three most carrmnly used iteration methods are the Jacobi,

Gauss-Seidel, and successive over-relaxation rethods. They are derived

by factoring the coefficient matrix into strictly upper triangular,

diagonol and lower triangular matricies denoted by U, D, and L respec-

tively (Ref 3:46-47):

(U + D + L)t = b (2.29)

The Gauss-Seidel ithod (also known as the irethod of successive

displace nts) is used in this thesis. It expresses the (n+l)th

12



iterative vector in terms of both the nth iterative vector elkients and

the (n+l)th iterative vector elements as soon as they beccni available:
(n"1 (n)

(L +D)t (n + l ) = -Ut -n ) + b (2.30)

or written in a fom similar to Ecj (2.27)

(n+1) -n)
t = -(L + D)-Ut' n ) + (L + D) b (2.31)

Translated into a ccmputational algorithm:

(i-iz (n+l) n (n)
_n(l)l1

t i  a.-E a..t. + Z ai.t j  -b (2.32)aii j=la jt  j=i+l

where aij is the element in the ith raw and the jth column of the

coefficient matrix. One begins the process by choosing some arbitrary

initial trial vector, t 10 ) .

Norms

in the following sections, we will be concerned with measuring the

difference between exact temperatures aerived analytically and the

tenperatures found fra the iterative process. The error vector is

defined as

e (n) = t - t(n) (2.33)

where

e (n) = the error vector for the nth iteration

t = vector of exact nodal temperatures

t(n) = vector of nodal temperatures fran the nth iteration

rhe displacement vector (also known as the "residual vector") is

defined as

13



}" "' d (n) tl(n+l) t (n)G-34
,. = - (2.34)

where

t (nk+l) = vector of nodal temperatures frat. the (n+l)th iteration

t (n) = vector of temperatures fram the nth iteration

It is often more convenient to measure the size of these vectors

as scalar quantities. A nom, symbolized by I I I , will allow one to

do just that. A vector n-norm can be defined by

I ItI In = (:ItiIn)1/n (2.35)
1

where

t = vector

t. = ith element of vector t
4I. 1

()The norm used in this thesis is

11tI = .tl. (2.36)

Stopping Criteria

Standard Method. One of the fundairental difficulties with itera-

tive methods is detenining when to stop iterating. Som common

criteria are (Ref 4:227)

I t ( ) _ t ( n- 1 ) I 1( . 7

or

or (n) -t (n-1)

. 4i t(n) < E (2.38)

for some prescribed c or

1
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n >N (2.39)

for some given N.

The problen with the above criteria is that

it(n) _ n-) < C (2.37)

.des not imply that

Ht(n - ti < E (2.40)

Figure 2.2 illustrates this fact (Ref 9:5). Thus, for problems where

convergence is slow, t (  may be far from the exact tenperature even

though it would have eventually been reached. However, choosing an

iteration limit that is to stringent might lead to a considerable waste

of ccmputer time.

A simple technique has been found that will allow one to use the

displacement vector, I d(n) II to estimate the error, IIe(n) i (Ref 14).

Recall that the matrix ecuation can be written as

t = Gt + c (2.27)

And an iterative solution can be written as

t(n+ l) = Gt (n ) + c (2.28)

%.

" 1y subtract Eq (2.28) fran Eq (2.27), the error vector can be written

e (n+l ) = Ge(n) (2.41)

.... The following discussion holds for all real srmmetric and scme

real nonsymmetric matricies (Ref 3:27). Assume that the initial error

5.%

5.0
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2; t (0)

iteration limit

error
True V. V _

Tenrp.

_ _ _ I _ __ _

Iteration n1,xer

Figure 2.2. Iteration Limit.

vector can be expanded in terms of eigenvectors Vi of the iteration

matrix G (Ref 14:236)

(0) iIC V .  (2.42)

wbere C are scalars and m is the dineision of the square coefficient
Vl

matrix. Frcn Eq (2.4 1)

e (n ) = Oe 1(0 )  (2.43)

where Gn is G raised to the nth power.

16
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: :'." e~~n) =_ n ZCV.(.4

In)

e ) = C.G'V. (2.45)

i=l 3- -;-

But GV. = X.V. by the definition of an eigenvalue where X. is an-1 1-1-a

eigenvalue corresponding to V Then
Inl

e (n )  E _Cixinv i (2.46)
i7-1

-- = 12 n .+( Xm n

e n ) ( n+ ... C(V (2.47)

If A1 1 > !x2 1 > Ix 31 > .. > 1Xm1

then for large sufficiently large n

e (n)  X 1 nCIll (2.48)

e (n + l )  > 1ln+lcIVI (2.49)

so

e(n+l) > 1e(n) (2.50)

• .In order for the error vector to vanish

I x1  <1 (2.51)

IX_1 is called the spectral radius. Dq (2.50) shc;s that if 1 is

mnall, convergence occurs rapidly. In general, X1 increases for a

larger number of unknowns (Ref 3:116; 16:87). Thus, a problem takes

more iterations to solve as one increases the number of nodal points

., :.. used in the finite-difference and finite-elerent methods.

17
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Fran Eq (2.33)

t t tn) + e( n ) (2.52)

"A. and fro=. Eq (2.50)

t t(n+l) + i e (n )  (2.53)

el.u~n.nating e (n ) between Eq (2.52) and Eq (2.53) gives

t t (n + l )  _ i t (n )

z (2.54)
* .. 1

-a

- or t (n + l ) _ ( n )

t z t + tn - - (2.55)

Fran Eq (2.55), it can be seen that, if X. is close to one, then small

differences between successive iterations does not inply that the

iterative solution is close to the exact solution. But, given the

definition of the error vector and the displacement vector, the error

vector can be approximated by

(n) d(n)
e -- (2.56)

a- "or-p..

:;.? 1Id(n) Il
Ile In) -I 1 (2.57)

'5l
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For most problens A will not be known but can be approximated in

the following manner (Ref 14:241). For sufficiently large n

e n) (n-1) (2.58)

1-
•e"- (n+l) _e(n) (e(n) -e (n-1) (.9

t :(t n + l ) - t (n )  (t (l t
n ) - t (n - i )  ( 2.60)

od 
n )  X Al (n-1) 

(2.61)

(n)

1ii d -(2.62)I d_1  (

Therefore

"d(n)II

S~1 d(n)~ (2.63)( ( )

. One now has a sinple means of estimating the error between the

true solution and the iterative solution at the nth iteration and,

therefore, a criterion for stopping the iterative process. The

variational integral will be judged against this criterion. Young

provides a more refined version of this error approximation stopping

criterion (Ref 17:226-227). Warren gives a more detailed analysis of

this and related error estimates (Met 16).

Variational Integral. Since the variational integral is

ext-remzed for the exact solution to the boundary value problem, it is

.19



thought that the nodal temperatures frun the iterativc riethod can be

4 substituted into a numerical approximation of the variat-ional integral.

As the nodal temperatures approach the exact values at the nodal

points, the variational integral should be extremize. Thus, an error

criterion might be

"\" f~n )  llnl~l -(2.64)

for sane prescribed E. This criterion might not have the difficulty

that the standard criteria had for slowly converging problems as

illustrated in Figure 2.3.

V ...:

Va~riational1

Integr'al

I terationS Diffe'ren-ce

7 (rI+i)

I aIteration -
Differece Zt ( n+l )

'%Ieain Itl_

Figure 2.3. Hypothetical Iteration Lit Comparison

20



.. .. , It is also thought that the variational integral can be used as a

stopping criteria for a special case of problems where the temperatures

,rom the iterative technique are either mstly above or mostly belcw

the exact values. Suppose the initial trial solution for nodal tepera-

tures is above the exact values but the iterative rrethod converges to

temperatures below the exact values; then, at some iteration, the

iterative solution will pass through the exact solution and the varia-

tional integral will be extremized. In practice, one will not kncw the

exact values but an initial trial solution can be chosen that is known

to be above the true solution and then an initial trial solution can be

chosen that is known to be below the true solution. One of these trial

solutions will pass through the exact solution.

v.

"-

21
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III Procedure

In this section, the three heat equatlons used in this thesis qnd

the computer codes used to evaluate the problnes are exaraned.

One-Dimensional Heat Equation

The problem to be examined is shown in Figure 3.1. The equation

to be solved is

d 2 t 2t = 0 (3.1)
dx2

where m is a constant. The boundary conditions are

t (0) =1 (3.2)

d () 0(3.3)

141
%

i t =1 thir rodI --- 0
dx

L

Figure 3.1. Heat Conduction in a Thin Rod.

22
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The equation is easily solved (Ref 11:21):

.t - cosh[m(L - x). (3.4),....Cos-, (mL)-

Variational Integrai. The variational integral for the

one-dimensional heat equation can be developed by ccmparing the

governing differential equation (Eq (3.1)) with the Euler-Lagrange

* equation in one dimension:

D.4 -F _d ( F 0 (3.5)

xI

The result of the comparison is that

.. 7 M (36

0 Thus, the integral to be extremized can be written

I(t) = 1 L  , m2t d (3.7)

In order to use the variational integral when only the nodal

temperatures are known, the derivative in Eq (3.7) is approximated by a

forward difference and the integral is appro.imated by a sum (Ref

10:235):

%-t

ti+l i
i(t) i+l -ti) + mti2 (xi+1 -x i) (3.8)

one can use the botuxary condition given in 14 (3.3) and the forward

difference approximation given by Eq (2.21) to show that for i = N,

23



tN% %- (3.9)

For the purpose of validating the computer code, the variational

v . integral was solved analytically in Appendix A:
A.

1(t) = tanh(mL) (3.10)

Finite-Difference Fonrmlation. The thin rod shown in Figure 3.1

is divided with a number of equally spaced nodes as shown in Figure 3._ .

1 2 L- 1 T+
- C.

4-.;

Figure 3.2. Nodal Divisions for Thin Rod.

The differential equation is approximated using Eq (2.25):

t i+ -2t i + ti I  2
h2 + = 0 (3.11)

24
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where

h =xi+ -x i  (3.12)

Eq 1(3.11) can also be written as

-ti_ + Dti - t4 = 0 (3.13)

where

D = 2 + (mhL) 2  (3.14)

Using the boundary condition given as Eq (3.3) and the central

difference approximation given by Eq (2.22),

• ,(, t+l= t- 1  (3.15)

thus Eq (3.13) for i = N is given by

-2t 1 _1 + DtIN - 0 (3.16)

and using the boundary condition given as Eq (3.2)

Dt t= 1 (3.17)

Therefore, for a problem with four unknown nodal temperatures, the

simultaneous equations can be written in matrix form as shown in Figure

3.3.
D -1 0 0 tI  1
-1 D -1 0 t 0

0 -1 D -1 t 3 0

,L% 0 0 -2 D t 4 L0

Figure 3.3. Matxix Equation for Finite-Difference Approximation, Four

.odes.
25
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In order to validate the caputer cxde, m = 2 and L 1 so

that the tenperatures could be ccrpared with those given in the

literature (Wef 11:243).

Finite-Eienent Formulation. Tht. iite-elenent irethod is inore

involved than the finite-difference method and the derivation of the

matrix equation is given in Appendix B. The matrix fonulation of the

problem turns out to be identical to the finite-difference fornilation

(Figure 3.3) except that

", D = 12 + 4(mhL)2  (3.18)
6 - (mhL)

oTwo-Dimensional Poisson's Equation

The problem to be examined is a square plate with uniform energy

generation across the plate. The equation to be solved is

-2t 2t + 0
(3.19)2 2 k

-4..ax @y

where g and k are constants. The boundary conditions are

-(0,y)= 0 (3.20)

9t.WI(x,0) = 0 (3.21)

t(L,y) = 0 (3.22)

t(x,L) = 0 (3.23)

, . ..,, ',,2
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[ q The analytic solution is rather involved and is Qeveloped in Appendix

"":C. For the validation purposes, g, k, and L were set equal to one so

Sthat the numerical solutions could be camare with the literature lef

. Ii:260,384).

Variational integral. The variation~al integral is de'veloped by

-[i comparing the differential equation with the Euler-Lagrange equation in

<. two dimensions (Eq 2.17)). Thne integral is given by

ii1 I2t = I(LR ) 2- _-c

(dx[Lt)dy (3.25)

Theintegral is approximated by sums over both the x and y directions.

Thbe derivatives are approximated by back-wards differences in order to

take advantage of the derivative boundary conditions in the same way

~that the forward difference was used to take advantage of the deriva-

t4 ive boundary codto nthe one-dinvensional problem (pg. 23):

4.

' 1N M (ti"j - t i-l,j2

It 2i=0 j=0 A

.'. Ay i'jj 39xVy (3.26)

-j., ein addinat tional iitegral was solved analytically for

cFputer co e validation. oe derivation is very similar to the

derivation for the one-dimeensioul problem given in Appendix A.

ccm"Finite-Difference Formulation. The sqare plate is overlayed by a

system of square meshes each of dimension h by h.

27
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The heat equation Eq (3.19)) can be approximated using Eq (2.25):

-1 (ti+l,j -2tj +ti-l, ) +j+l 2ti, + t + 0 (3.27)

...%

where

x = ih (3.28)

y = jh (3.29)

The subscripts must be combined before the function, t, can be repre-

sented by a vector. This is easily done by incremnting the subscript

j through its range of values while, for each j, incrementing i through

its range of values. A matrix equation is found for the two-dimensional

problem in a manner very similar to -.hat of the one-dimensional problem

fdiscussed on page 24.

Finite-Element Fornulation. Triangular elements are used in the

two-dimensional problem. If one uses the same nodal points as used in

the finite-difference scheme, then the elements can be oriented in two

different fashions. The orientation in Figure 3.4 will be referred to

as "Case One" and the orientation in Figure 3.5 will be referred to as

"Case Two." The two arrangements lead to different matrix equations

and, consequently, different solutions.
<' ,.TWo-Dimensional Laplace' s Equation

The problem to be considered is a square plate

a2t +at 0 (3.30)x2 + y2 =

28



subet to the boundary, conditions (.1

t (0,y) 0 03.32

t~x,L) =0 (3.33)

-t * (L,v) =101) (3.34)

y

-. .

%a.

Fiue3..FnteEam, r.geet(as n)

, *29



"-% .'.

x

Figure 3.5. Finite-Elewent Arrangement (Case IUV).

The problem is a rather starndard boundary value problem. There rore,

the analytic solution will not be derived i this thesis. Thne solution~r

Js given by (PEf 6:107):

00 200(1 - cos (nrr)) sinh (nx)sin ( ) (335)

t XY)=nl n-,sinh (nT-) LL(.5

Variational Integral. -lie variational integral is developed by

ccraring the differential equation with the L'uler-Lagrarige equation.

The integral is given by

I Mt2 + M 2 xy(3.36)

30
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The integral is approxirlated by sums over both the x and y directions.

Tne derivations are approximated by central dfferences.
"-"

N M .- t. 2 t(t) 1 ~ ~ i-l, t + i,j+l - t i'j-i h2

--t). "+ 2h h (3.37). It)z i=0 j=0 2h 2h

Finite-Difference Formlation. ,he square plate is overlayed by a

system of square Meshes and the problem is solved in the same way as

the Poisson problem. Due to tire constraints, the problem was not

solved using finite-elenent techniques.

Ccuputer Codes

All codes were written in Fortran-77 for a DEC Vax 11/780 ccputer.
The cCUputer programs were quite similar for all three heat equations.

For each of the boundary value problems, a program was developed

that calculated the exact temperatures at the nodes and then varied

these temperatures by a given percentage. These tenperatures were

substituted into the variational integral approximation to determine

what effect errors in the temperatures had on the value of the varia-

tionzil integral.

Another code was written for each problem that was used in the

* zaalysis of the variational integral as a stopping criterion and as an

accuracy criterion. The matrix Lquations from the finite-difference

aria finite-element methods were solved iteratively using the Gauss-

Seidel mthod. The exact solution at the nodal points was calculated

using the analytical solution. After each iteration, the difference

ap 
d
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between the exact and iterative temperatures was used to calculate the

percent difference between the exact and approximate temperatures

- [ (n)[ = [I -  t (n) HII!.( - , ___ i_(3.38)

The difference between successive iterations was used to calculate

the percent change in temperature

I a")I t (n) - (3.39)
.4.

(n)
_ t -

The reason for these new relationships is that when one actually

uses a stopping criteria, the percent error in a solution is usually

more useful than the absolute error. This also allows a ccparison

between the standard stopping criterion and the variational integral

criterion by eliminating the magnitudes of the temperatures and varia-

tional integrals. Note that Eqs (3.38) and (3.39) are very similar to

the error vector and displacement vector previously defined. In the

following sections the terms "error nori" and "displacement norm" will

*, refer to Eqs (3.38) and (3.39). The relationship

() -= f(n) (3.40)

?'_;;:,[ [ ! (n-)

is assumed to hold although it cannot be rigorously developed as was Eq

(2.63).

432
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. .' The variational integral was cmpiuted after each iteration by

substituting the temperatures frm the iterative process into the

varidtional integral approximation. To ccaipare the variational inte-

gral as a stopping criterion to the stopping criterion defined in Eq

(3.40), the percent change in the variational integral is defined as

"£': l(n) _ (n-l)l

IAI(n) ' = (3.41)

.;3

.I*I* .9 .. . . . . . . . . . . . ., . , , - . . . . + . . . . . . . . . . . . . . . . . + . . .' a ., . ° " 4 " " ' - " , ' , 
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IV Numerical Results

Variational Integra! I rLmci.r

Recall that to calculate the variational integral based on the

nodal tenTeratures, the integral had to be approximated using differ-

4ences for the derivatives and sums for the integrals. These approxima-

tions lead to the concern that the variational ntegral approximation

might not be extremized at the exact nodal teneratures.

This was found to be the case for all three problems considered.

... The exact temperature for each node was varied by a given percentage of

the exact temperature and the variational integral was calculated.

Figures 4.1, 4.2, and 4.3 illustrate that the integral for the one-

dimensiol heat equation had a minir=u for some given values of

Atemperature and that this =mnu occurred closer to the exact tempera-

.- tures as the number of nodes increased. Figures 4.4 and 4.5 illustrate

that, for the tWo-dixensional problems, the variational integrals are

minimized and these minima occur at temperatures other than the exact

values. Table I summarizes the results ±or all three problems. For
the purpose of this thesis, one variational integral approximation will

be said to be more accurate than another if the ndnimum in the varia-

4.'-t tional integral occurs for temperatures closer to the exact values.

Thus, Table I shows that the variational integral approxiation becames

more accurate as the nutiber of nodes increase. In practice, one will

not know the exact temperatures and will have no way of determining the
-4

accuracy of an integral approxination as was done in Table I.
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.7

The exact value of the variational integral is calculated using

the analytical solution as shown in Appendix A. It can be seen, in

Table I, that the value of the variational integral approximation does

not approach the value of the exact variational integral in the Poisson

problem even though the accuracy of the integral approximation improves

for an increasing number of nodes (using the definition of accuracy

given above). Thus, relating the value of the integral approximation

to the exact value is of little use. Furthermre, one will not be able

to calculate the exact variational integral in "real-wdorld" problems

since the analytic solution will not be known.

Table I

Variational Integral Approximation

PoeExact Integral Percent. ""Problem Integral 1 Nodes Approximation 2  Deviation 3

4 1.260 -0.80
One-Dimen. 0.964 8 1.105 -0.21

16 1.033 -0.05
32 0.993 -0.01

Two-Dimen. 4x4 -0.1070 +13
Poisson -0.1406 6x6 -0.0947 +9

8x8 -0.0884 +7

D.-Dimen. 4x4 4.35xi03  -53
Laplace 1.04x104  6x6 5.92xi0 -45

8x8 7.21x103  -39

1. Value of variational integral using analytic solution.

2. Value of variational integral approximation at its minimum.

3. Percent deviation from exact nodal temperatures where the
minimun in the variational integral occurs.

40
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Stopping Criteria

Recall fron Section II, that for a problemi with slow convergence,

the difference between tenperatures for successive iterations coula be

snall even though the difference between the iterated value and the

exact value was still quite large. t was thought that the variational

integral might give an alternative evaluation for terination since the

integral is extrtnized as the iterated nodal teperatures approach the

exact nodal temperatures. Figure 4.6 shows that as the stun of the

iterated temperatures approaches the sum of the exact temperatures, the

variational integral converges to a constant value.

Figure 4.7 compares a common stopping criterion, IldlnII with the

variational integral stopping criterion, ! (n) It can be seen from

Figure 4.7 that, past a certain iteration, dn) 1 and (n)

* decrease at the same rate.

One can easily explain the linear decrease in [dn I (keeping in

A . mind nhat the y-axis in Figure 4.7 is a logarithmic scale). The slope

of ,, (n),, is given by

M = logl!a~n) {- _log! a(n-ll'j (4.1)

n - (n-i)

Recall that for large n

w.. .. I j{a (n ) }

SxI1 =(4.2)
aj (n-1) H

or

logIA 1 - log, fa(n) II- log!ld(n-)fJl (4.3)

41
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J-." .. By comparison of Lq. (4.1) and (4.3), it can be seen that

m = logi (4.4)

l.re importantly, Figure 4.7 shows that for sufficiently large n

! i Ixl In) (4.5)
;![, TAI (n-)

Eq. (4.5) was found to hold tor all three heat problems and all nodal

densities considered. Thus, the variational integral does not provide

(n),a better stopping criterion because I decreases at the same rate

as jId"n) l.

V"' Furthernre, the standard method can provide an estimate of the

error while the variational integral cannot. Figure 4.8 shows the

error nonn and the error norm estimate. The error estimate approxi-

.ates the error once the spectral radius approximation has converged to

its final value. Figures 4.9 through 4.11 show that the spectral

radius approximation rapidly reaches a given value and that this value

increases as the number of nodes increase. LEturning to Figure 4.8, it

can be seen that the estimate of the error norm continues to decrease

even though the error norm has stopped decreasing. This is due to the

fact that the error norm estimate depends only on temperatures from

successive iterations. The error norm decreases until, at some itera-

tion, the discretization error prevents any further decrease.

In Section II, it was predicted that the variational integral

could be useful when the iterative temperatures passed through the

@ exact values. Figure 4.12 shows the sum of the nodal temperatures from

44
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1.

the iterative method Passing through the sum of the exact nodal tuer-

atures after tlirty-seven iterations. Thus, one would expect the

variational integral to be extrernzed at the thirty-seventh iteration.

Ficure 4.13 shows that the variational integral was actually minimized

after ineteen iterations. This is understandable in light of the

S. previous discussion in which it was found that the variational integral

approximation is minimized for temperatures other than the exact

values. The results frm Figures 4.12 and 4.13 can be represented more

concisely using fAI (n) and I , (n) I . Figure 4.14 shows that the

variational integral stopping criterion, AI(n), has a "cusp" or local

minuinm where the variational integral is a minimum (nineteenth itera-

tion) and the error norm, jje(n) I has a cusp where the iterative

solution passes through the exact solution (thirty-seventh iteration).

In Figure 4.14, the initial trial solution was greater than the exact

solution. The finite-difference equations converged to temperatures

below the exact values. Figure 4.15 shows that when the initial trial

solution was below the exact solution, the iterative temperatures did

not pass through the exact values and no cusps were observed for either

IAI (n) I or 116(n) 1. Table II ccapares the iteration number where the

integral apprximatior is minimized to the iteration number where the

error norm is minimized. Appendix D shows that the results of the

stopping criteria study hold for all three problenils and all nodal

densities considered.
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Table II

Integral and Ehror Norm Minima

I2
Probleml Nodes Integral2

4 6 9
6 15 26

One-Dimen. 8 30 53
10 51 90
16 150 280

qxw-Diren. 4x4 20 38

Poisson 6x6 43 96
8x9 74 185

Two-Dimien. 4x4 7 32
Laplace 6x6 18 66

8x8 35 ill

1. Using the finite-difference method

2. Iteration number where the minimnm occurs

Accuracy Criterion

Since the variational integral is mindmized for the exact solu-

tion, it was thought that the variational integral approximation

could be used to determine which numerical method would give the best

approximation to the true solution. Two methods were considered--the

finite diffenxce method and the finite-element, method. Due to tine

constraints, only the one-divensional problem and the Poisson problem

were considered. Table III shows the results for the one-dimensional

problem.

,5lI,.
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ft ft

,-...Integral and F-ror Norm for 1-D Problem

t.'.Nodes FPthod 1ntegr,

SFD 1.3720 0.0759
..- F 1.3695 0.0812

,- .4 FD 1. 2606 0. 0549
FE 1. 2594 0. 0569

5 - FD 1. 1967 0. 0429
.FE !. 1960 0.0436

"--.6 FD 1. 1553 0. 0351
- FE 1. 1.550 0. 0352

'- 7 FD 1.1264 0. 0298
,'.> FE 1. 1262 0. 0295

, FD 1.1051 0.0259
FE 1.3049 0.0253

4 FD: Finite-Dffere1nce Method
FE: Finite-E!erwent Method

,[ .:<Note that for nodal densities of less than six, the tenmperatures

, ! from the f inite-ele nt method rminimze the variational integral even

m though the finite-difference mthod minimizes the error norm. Ikxdal

[.[. -dusities greater than eight were considered but they gave the same

" -""results as densities six through eight and, consequently, were not

..... ;._. included in the table. The discrepancy between the integral and error

. .- _ norm for nodal densities less than six" cwi be explained. Table IV

• . '-' shows that the temeatures for the finite-elenent method are less than

$, the exact tenperatures while the tenperatures from the finite-dif-

'.-'4" .. -. ference method are greater than the exact terperatures.
- f55
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Table I7V

Nodal Temperatures for .-D rrobln (Four Nodes)

Node Exact Finite-Diff. Finite-Elem.

1 0.6252 0.6289 0.6215
2 0.4102 0.4150 0.4051
3 0.2998 0.3049 0.2943
4 0.2658 0.2710 0.2604

Figure 4.16 is based on Figures 4.1 through 4.5 and shows how the

variational integral could fail to predict which rethod is most accu-

rate. For nodal densities greater than or equal to six, the finite-

element mthod gives more accurate temperatures and, therefore, the

variational integral approxiimtion correctly predicts the more accurate

ethod.

The results for the Poisson problem are sinTarized in Table V. It

4A was found that one finite-element case gave the rost accurate tempera-

tures while the other finite-element case gave the least accurate

answers. For all nodal densities considered, the variational integral

correctly predicted which rethod gave the most accurate solution. The

difficulty that occurred in the one-dimensional problem did not occur

for the Poisson problem because the majority of teoperatures for all

three methods gave tenperatures below the exact values.
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Table \7

Integral and Error Norm for Ibisson Problem

1Nodes Method ntegral H
FE-2 -0.1632 0.4147

2x2 FD -0.1.680 0.1891
FE-I -0.1710 0.0844

FE-2 -0.1806 0.3966
4x4 FD -0.1815 0.2143

FE-I -0.1821 0.1024

FE-2 -0.1940 0.3961
8x8 FD -0.1942 0.2366

4 FE-I -0.1944 0.1223

1. FD: Finite-Difference Method
FE-I: Finite-Elenent Method (Case COne)
FE-2: Finite-Eement Method (Case Tklo)
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Conclusions and Reccaendations

""Conclusions

The variational integral approximation for each of the three

boundary value problems was minimized for temperatures other thun the

exact values. As the number of nodes was increased, the approximations

W*re nimiunzed at temperatures closer to the exact values.

As a stopping criterion, the variational integral was found to be

less effective than the error estimate criterion. For a sufficiently

".- / large number of iterations, the variational integral stopping criterion

decreased at the same rate as the error norm estimate criterion. But

the error norm estimate provides an estimate of the actual error norm
--

for a limited nrumber of iterations while no such error estimate is

available frcn the variational integral stopping criterion. Further-

". ~more, the error norm estimate is easier to calculate.

For the special case where the temperatures frao the iterative

methods passed through the exact temperatures, it was found that the

•. -.% .% error norm was minimized at a different iteration than was the varia-

tional integral approximation. This was expected since the variational

integral approximations were not minimized for the exact temperatures.

- ".*~- Thus, the utility of the variational integral as a stopping criterion
-.5-

for this special case depends on the accuracy of the variational

integral approximation.
w.-

The variational integral approximation did not correctly predict

which method gave the rrst accurate solution in ::ome of the cases

studied. It is believed that this failure is due to the variational

959
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integral approximation being r:ininized at temperatures other than the

exact values.

[-,'[Recarnrendations

Many of the cifficulties of using the variational integral as a

stopping criterion or an accurac-y criterion are believed to be due to

the fact that the variational integral approximation is minimized at

,. temperatures other than the exact values. Thus, attention should be

focused on reducing or, at least, predicting this error. Better

methods of approximating the derivatives and integrals under the.

variational integral may exist.

For the accuracy criterion, consideration should be given to using

linear interpolation functions to transform the nodal temperatures into

a piecewise continuous function. These functions can be substituted

4. into the variational integral and the integral can be solved analyti-

cally. Other techniques that solve the boundary value problem over the

entire solution region such as the Rayleigh-£-tz and Galerkin methods

can also be substituted into the variational -ntegral to determine

which method gives the most accurate solution.

.

.

[:-'.. . - .--,'. --. ; -",'.- .:- -- '.... ..- ' -. ., -. '...''-...,%.... ,:..:,.,'...-. .:,-.-"v v ,- - ..-.0.=



4%

Bibliography

1. umwzigo, John C. and Lester A. Rubenfeld. Advanced Calculus and
-:9 Its Applications to the Engineering and Physical Sciences. New

lork: John Wiley and Sons, inc., 1980.

2. Churchill, Ruel V. and James Ward Brown,. Fourier Series and
BounKary Value Problems (Third Edition). New York: McGraw-Hill
Book Copany, 1978.

*'- .- 3. Clark, Melville Jr. and Kent F. Hansen. Nunirical Methods ofReactor Analysis. New York: Acaaanic Press, Ir;L., 1964.

4. Conte, S. D. and Carl De Boor. Elerentai- Numerical Analysis
(Thira Edition). New York: McGraw-Hill Book Company, 1980.

5. Forsythe, George E. and Wolfgang R. Wasaw. Finite-Difference
iethods for Partial Differential Equations. New York: John Wiley

..-.. and Sons, Inc., 1960.

6. Gallof, Sanford. A umierical investigation and Utilization of
Green's Functions. MS thesis. Wright-Patterson AFE, Ohio: Air
Force Institute of Technology, June 1968.

-~7. Gurtin, M. E. "Variational Principles for Linear initital Value
Problems," Quarterly Journal of Applied Mathematics, 22: 252-256
(1964).

8. Huebner, H. Kenneth. The Finite Element 11-thod for Engineers.
. New York: John Wiley and Sons, Inc., 1975.

9. Kaplan, B. Investigation of the "Iteration Limit" in the
. .-. Generalized Transient heat Transfer Program (THT). DC 59-11-198.

A-ircraft Nuclear Propulsion Department, General Electric, November
1959.

10. Martin, Harold C. and Graham F. Carey. Introduction to Finite
Element Analysis. New York: Mcgraw-hill Book Catpany, 1973.

11. Myers, Glen E. Analytical Methods in Conduction Heat Transfer.
New York: MacGraw-Hill Book Ccz:pany, 1971.

12. Mikhlin, S. G. Variational Methods in Mathematical Physics. New
-_ York: The Macmilian Company, 1964.

13. Schechter, R. S. The Variational Method in Enigineering. New
York: McGraw-Hill Book Company, 1967.

14. Smith, G. D. Numerical Solution of Partial Differential Equations
(Seccrid Witir) . Oxford: Clarendcn Press, 1978.

.-.

4.',



15. Ty, ryint-U. Partial Differential Eauations of Mathematical
Physics. New York: Elsevier North Hollana, inc., 1980.

16. Warren, Robert A. Convergence and Error Criteria of Iterative
Nlumerical Solutions to the Transient Heat Conduction Equation. MS

.thesis. Wright-Patterson AFB, Ohio: Air Force institute of
Technology, Mlarch 1982.

7. loung, David M. and iuis A. liageman. Applied iterative Piethods.
New York: Academc Press, Inc., 1981.

.62

.4.

.':,;.:,
,ho 

,

'. 62j

p.



W47 4 7V % -..- WV 
W7 W- - - - 4 . .

Axppendix A

Exact variational Integral

-'The variational integral for the one-dine-nsional heat- equation is

1()- dt1 2 + m~ti dx (A.l1)
2 o[

4-

integrating the first term by parts allows BEj (A.!1) to be written

I L A dtd(d) m2tx (A. 2)

Since the heat equation is given by

d t m t 0(A3

Eq (A.2) reduces to

x(t) (A. 4)

* Using the derivative boundary condition

dt(L) =0 (A. 5)

the integral can be written as

I (t) =-1 dtJ(A. 6)
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Substitutinjg the exact texrperaturLu at x equa1 to zero gives

li)=tanh(mL) (A.)

C*AI

A.
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Appendix B

Finite-Element Derivation for the 1-D Heat Equation (Ref 11:332-339)

Use linear interpolation functions on the elemnts for the

one-diens ional heat equation as show in Figure B. 1.

t

St3 t ) t(E)
t. 4 ti tj

'-$

4X 2 x3 x4 " i  x " " "

Figure B.1. Finite-Element Temperature Interpolations

Therefore, the temperature within elent e is given by t (e ) = C (e) +
C (e) x. The constants may be determined by evaluating at xi and x
2  j

x't.e- xit.(e) = r- J B.l)
xj xi

c(e) t - t i (B.2)
2 xj - x
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Consequently

t (e )  J ti -Xit1 (B.3)
x. - xi  xj -xi

arid
dt . - ti

-3 (B.4)
dx xji - x i

The integral for a given element can be written

2
1(e)=1

x (xiti . t 2
+ 7 m I t+ -- )cix (B. 5)

After I (e) is integrated, it will be a function of t i and t only. To

z minimize I(e) it rust be differentiated with respect to both t and

t. One can arbitrarily do the differentiation first and then the

integration:

3 I(e) X t tj +fj _ _2 2-- = 1 x3 2 + 2j _ [ (x it i _ x ixjit )
xi  (xj x i )  x i  (x- xi)2

2
+ (xit. - 2xjt. + xitj)x + (t i - tj)x ]dx (B.6)

T.The integration is carried out to give

aI(e) _ t. - t.

a ti  xj - xi

1 2 1

+ -2 [(iti + itj)(x - 3x2xi + 3xjx2 x3 ] (B.7)
(xj - x i )
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' . which can be sinplifiea:

!'! , (e )  ti - tj  (xj - xi)

" = + -3 (2ti + t.) (B.8)Dti  x. - x. 6 i

Similarly

(e) tj - ti + (xj (t + 2t (B.9)
atj = x-x i  6 i j

Assembling the integral of the elements, we find

E (e)
i I(tl, t2, .. Zm  I (TB.10)

e=l

.T To find the miniruun of I, differentiate with respect to each m and set

each derivative equal to zero. Since there are M nodes, there will be

)M equations. Each equations will of the form

-i(1) DI (2)  I(a) I i(b) ai(E)
+ t+ ... + - + + ... + -0 (B. 1)

tm m

"he only two elements that will contain t in their integrals are the

elements irmediately adjacent to node m. If the elements denoted (a)

and (b) are the elements on either side of node m, then Eq (B.11)

reduces to

a(a) aI (b)t + t 0 (B.12)t tm

For element (a), use Eq (B.9) and let i = m - 1 and j =m

9I(a) tm tM- + m2Ax (tin_ + 2tm ) (B.13)
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*:: .-:. For elemnt (b), use Eq (B.8) and let i = n, and j m + I

3T (b) tm - tm+ 1+ -xt+
x - (2t + tm1 ) (B.14)

m

* where

Ax = x - X. (B.15)
D I

Substituting Eqs (B.14) and (B.13) into (L.12) gives

- t + Dt -t + 1 = 0 (B.16)

N, where

_12 + 4mn2 (1 2
2 2 2 (Ax) (B.17)• 6 - m2 (Ax)2

Eq (B.16) holds for all interior nodes. For the first node, the

boundary condition can be used:

to =1 (B.18)

For node M, the temperature appears only in elemnt (E). Setting i =

1 - 1 and j = M and using Lq (B.9)

a(E) t 5 tp + 231 Ax 6 (t 1  + 2t,,) (B.19)

or

- 1 + Dt1, " 0 (B.20)

where D is as in Eq (B. 17). One now has the M linear algebraic

equations to solve siultaneously.
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.-. ..,4pendix C

., .,..

Derivation of an AnalYtical Solution for Poisson's Ecuation

'21e equation to be solved is

2t + 2 (C.1)
2 2

t(x,L) = 0 (C.2)

t(L,y) = 0 (C.3)

t(0,y = 0 (C.4)

= 0 (C.5)

Assumre that the solution can be written as t(x,y) = v(x,y) +

w(x,y) where v is the particular solution of Poisson's Equation and w

is the solution of the associated hcrrgeneous equation (Ref 16:239):

22v + .2v g (C.6)
x-2 3y 2 k

S2 w  .2 w+ 2w 0 (C.7)

x2 y2

with

•(x,L) = - V(x,L) (C.8)

-I.

w(L,y) = - v(L,y) (C.9)

T 'Pyw(0,y) =- _TV (0, Y) (C.10)
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c y

Assune v is of the form

v(x,y) = A + Bx + Cy + D.- L., + (C.12)

Substituting Eq (C.12) into Eq (C.6) gives

2D + 2F = - (C.13)k

4- Let

F- g (C.14)k

and

D (C.15)

The other coefficients are arbitrary so let

2

v (x, y) g 2 (C.16)2k 2 V

so that v reduces to zero on the sides y = 0 and y L.

Now solve for w using separation of variables:

w(x,y) = X(x)Y(y) (C.17)

This gives

X'tx) - ?,X(x) = 0 (C.18)

2 2

X(L)= ~2k 2k Y Y(y) (.9

~A X(O) = 0
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• a.

and

Y-(y) + WY(y) = 0 (C.21)

Y(L) 0 (C.22)

Y'L) = 0 (C.23)

Try

Y =Acr-s( 'Y)+ Bsinqv55y) (C. 24)

Apply boundary conditions:

Y'(O) = 0 (C.25)

therefore

B= 0 (C.26)

Y (L) 0 (C.27)

consequently

=(2n + ) n = 0, 1, 2.. (C.28)

* and

Y(y) =o s 2n + 1)a (C.29)
"-..,"

S.- Iram Eq (C.15)

2

X'lx) - [(2n + 1)2X(x) = 0 (C.30)

a....:.-.".
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-T

X(x) = Cerx + De-r x  (C.31)

where

r = [(2n + 1)-L] (C.32)
2L

Applying boundary conidition

X(O) = 0 (C.33)

Therefore

X(x) =C[&', + erx I (C.34)

or

Xlx) = cosh[ (2n + I)-I (C.35)

By superposition (Ref 15:7)

Coos 2n + l) cosh 2n + 1) (C.36)

• . w(x,y) = E +C(0.36)
n=0 n I2 L

'q:pplying the last boundary condition (Eq (C.19)):

2o o2
2 - = 2[(2n + 1)j2] cosh [2n + 1) (C.37)

5..-. Cxs(.7

Nul tiplying both sides of Lq (C.37) by the term cos[ (2m + 1) T]

and then integrating with respect to y:

L.. 2, L~ L d 2

2O 2k s m + 1) a Cos 2m + 11L

n'=02 2L So g 2 § 2 +)Id

f C0 = C[s 2m+l) cos 2n+l) cosh 2n+l) dy (C.38)

726%
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*.For m #n, the right-haind side equals zero. Therefore

2 n+1
gL (-1) 32

Cn 2k 3 3 7(.9
(2n +1) 7- cosh (2n + 1

and I

Hi f+la~r 2 l~~lr 2 lTX
n-O ~l Tr"~l I ch[h2n2l)-I I.

t(xy) 9 v- ~)+wxy (C.41)

2 2
t(x,y) =2k - 2

2 00(1) nlofs[(2nfl+)l]h[(2+1).x]
2L (C.42)

2k r n=O0 (2n+l) cosh[(2n+l) f I
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Appendix D

Stopping Criteria

The following figures show the error norm, the error norm esti-

mate, and the variational integral stopping criterion for all three

heat equations solved by the finite-difference method. The figures

show that for a sufficiently large number of iterations, the error norm

approximation and the variational integral stopping criterion decrease

at the same rate.

The figures also show that when the iterative solution passes

through the exact solution, the variational integral achieves a local

minimum at a different iteration than does the error norm. In the case

of Laplace's problem, the error norm achieves a local minimum but it is

not pronounced enough to be visible on the graphs.
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(Box 19)

Three stationary heat equations .rere solved using the finite-
difference rethod. The resultig set of al;ebraic equations were
Solvei- using the Gauss-Seidel iterative technique. The temperatures
at the nodal points wiere substituted into a nLtericJ acproximation of
the variational integral. The variational integral approximation ras
used to determine when to stop the iterative process. The variational
integral stopping criterion was compared to a stoppinr criterion that
uses the disalacement beten iterations to a.rroximate the error
between the iterative solution and the exact solution. Tie variational
integral was found to be less effective as a stopping criterion than
the error estimate.

The variational integral was examined as a method of determining
whether the finite-difference technique or the finite-element technique
gave a more accurate solution. It wras found that tie variational in-
tegral failed, in soirw cases, to predict thie a)ere accurate method.


